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Exact solutions of laser rate equations
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Abstract. An analytical analysis of the rate equations for three- and four-level
laser systems is presented. Exact closed-form analytical relationships are derived
between the inversion population density N(z), the photon number ¢(z) and the
time ¢ for specific values of the pump rate W,. Among the various solutions that
are presented, the general analytical relationship between ¢(t) and N(?) for a
three-level system at the threshold pump rate is derived.

1. Introduction

There are, in general, three approaches to laser theory: quantum theory,
semiclassical theory and rate equation theory. By treating both the atoms and the
electromagnetic fields quantum-mechanically, the quantum theory is able to
describe the behaviour of laser systems more accurately than are the other two
theoretical approaches. The pitfall of the quantum theory is its complexity; solution
of the resulting equations often requires sophisticated numerical procedures and
considerable central processing unit time. The quantum approach is rarely used for
applications other than studying phenomena that are not predicted by the other two
theories (e.g. statistical behaviour and noise). Semiclassical theory treats the
electromagnetic fields classically, while the atoms are treated quantum-
mechanically. This approach properly accounts for coherence and multimode
operation of laser systems. The rate equation theory is the limiting case of
semiclassical theory for short coherence decay times. It is based upon simple
conservation arguments and, while it does not treat coherence properly, it is
successful in describing a variety of phenomena including threshold behaviour,
spiking, continuous-wave operation and Q-switched operation. The rate equation
approach is the method that is considered in this paper.

Two excellent reviews of the rate equation theory have been presented by
Siegman [1] and Svelto [2] (Svelto’s notation was chosen for use in this paper).
Consider figure 1 where the energy levels of a three-level laser are schematically
depicted. If it is assumed that the inversion population density and the number of
photons within the laser cavity are spatially uniform, and that the laser operates with
one dominant mode, then the application of basic conservation principles results in
the following set of coupled nonlinear ordinary differential equations which govern
the behaviour of this system:

dg 1

It-= VanN_Zq) q(t0)=q0) (1)
dN 1
¥=—23¢1N+Wp(N.—N)—;(N.+N), N(to)=No. (2)
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Figure 1. Atomicenergy levels and transitions in a three-level laser. Atoms are pumped from
the ground state (level 1) to an excited energy state (level 3) and then quickly decay,
relative to the spontaneous decay rate from level 2 to level 1, to a lower-energy state
(level 2). The decay from level 2 to the ground state consists of both stimulated emission
(Lase) and spontaneous emission (7).

Definitions of parameters appearing in equations (1)—(4) of the text.

Parameter Definition Units
t Time (s)
q Number of photons )
N Inversion population density =N,-N, (em™3)
N, Total population density (cm™3)

=N, + N, for a three-level system
=N, + N, for a four-level system

N, Population density of energy level 2 (cm™3)
N, Population density of energy level 1 {cm™%)
N, Ground-level population density (em™3)
v, Mode volume in active medium (cm?)
v Volume of laser cavity (cm?)
T Spontaneous emission lifetime (s)
T, Cavity lifetime (s)
B Transition rate per photon=gc¥V ™! s™H
a Stimulated transition cross section (cm?)
c Speed of light (cms™1)
W,  Pump rate (s™hH

These equations are known as the three-level rate equations. Each parameter
appearing in equations (1) and (2) is defined in the table, followed by appropriate
units in parentheses. Equation (1) states that the rate (dg/dt) at which the number of
photons within the laser cavity changes with respect to time is equal to the rate
(V,BgN) at which photons are produced within the active medium by stimulated
emission minus the rate (¢t !) at which photons leave the laser cavity through the
end mirrors. Equation (2) may be interpreted in an analogous manner; the rate (d N/dt)
at which the inversion population density changes with respect to time is equal to the
rate (— 2BgN) at which the inversion decays due to stimulated emission plus the rate
(W,N,— W_N) at which the ground-level atoms are pumped back up to the excited
state minus the rate (N, + N)7— 1) at which the upper level (level 2 in figure 1) decays
owing to spontaneous emission. Consider figure 2 where a four-level system is
schematically depicted. The rate equations for this system are

dq

1
—=V BgN-—— 1g)=
dt aq T, q, q( 0) qos (3)
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Figure 2. Atomic energy levels and transitions in a four-level laser. Atoms are pumped from
the ground level to an excited energy state (level 3) and then quickly decay, relative to
the spontaneous decay rate from level 2 to level 1, to a lower-energy state (level 2). The
decay from level 2 to level 1 consists of both stimulated emission (Lase) and
spontaneous emission (7).

dN 1
FThE —BgN+ WP(N,—N)—?N, N(ty)=Ny. 4)

While the rate equations have been used successfully in describing many of the
basic characteristics of laser systems, exact closed-form analytical solutions have not
been determined. With the exception of special limiting cases such as steady-state
operation, these equations must be integrated numerically. However, even standard
numerical procedures for solving coupled differential equations must be applied
with great care in determining transient solutions to the rate equations because these
equations are nonlinear, and the physical constants in the equations typically differ
by several orders of magnitude.

Researchers have attempted to determine analytical solutions to these equations
but have gained only limited success. By assuming that the inversion population
density and photon number could each be expanded in an infinite power series in
time, Marchi, Millan and Criné [3] were able to solve the three-level equations.
Unfortunately, the coefficients in these solutions are complicated functions of the
physical constants, and it seems likely that the determination of numerical values
from these infinite-power-series expansions would present more difficulty than
solving the original equations directly by standard numerical procedures.

The determination of analytical solutions would provide researchers with
information on how the inversion population density and photon number depend
upon time and upon the physical constants of the laser systems that these equations
model. It is the purpose of this paper to derive exact closed-form analytical solutions
to the rate equations. The methods of solution are described in the following section.

2. Analysis
The equations for both three-level and four-level systems may be represented by

d 1
‘d—q= VanN_—q) Q(to)=‘10, (5)
t T
dN 1
E:cqu—<Wp+~T—)N+Cz, N(to)= N, (6)

where

1
¢, =-—12B, cz=N,<Wp——?), @)
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for a three-level system, and
€= —B) 02=N1Wp) (8)

for a four-level system. Solving for ¢/N from both (5) and (6) and setting the results

equal,
1 (dg 1\ 1[dN 1
S )= W+ IN—c, | 9
lﬁB(&*&f) q[dt ( P+r> ”] ®

Equation (9) may be equivalently expressed as
t\d t v.B 1
(=il oo (]2 ool (2]
1./ dt T, ¢ T
d 1 V,Bc,
— — | ——"= 10
xdz{NexP[<W”+1:> :I} o (10)

For simplicity, suppose first that W,+1~!=1_"', for which equation (10) becomes

V.B t
dt T, ¢ ¢ T,

Integrating (11) with respect to time gives

€y

N_Kﬁ

t
q+c21:c+Cexp<——>. 12)

c

The parameter C in equation (12) is a constant of integration. Substituting for N
from (12) into (5) gives

c

d 1 t
d—q=01q2+[Vchz1:c——+ VaBCexp<~->:|q. (13)
t T T

This is a Bernoulli equation. The solution to (13) is

-1
()= — {’7 exp [—u(t)] + ¢, exp [~ u(?)] JeXp [u(2)] dt} ) (14)

where 7 is an integration constant and

1
u(t)=<Vchz1:c——>t— V.BCt, exp(—i) (15)
T

Substituting (14) into (12) gives
2!

N(t)=—VB

-1
{'7 exp [—u(2)] +¢, exp [—u(?)] jeXp [u(5)] dt}

+cz1:c+Cexp<—{—>. (16)
c

Equations (14)—(16) are the time-dependent solutions of the rate equations for both
three- and four-level systems for a pump rate W, of ;' —17 1.

In order for a laser to reach threshold, a critical pump rate is required. If N> N,
where N,=(V,Bz) ! is the saturation value of the inversion population density,
then the pump rate necessary for a three-level system to reach the lasing threshold is
given by W, =11, while for a four-level system it is given by W,=N.(Ns)" 1 For
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near-threshold operation, the pump rate that was assumed in deriving equations (14)
and (16) limits the application of these solutions to systems where t and 7, are of the
same order of magnitude. With the exception of the special cases where t=7, for a
four-level system, or t, <7< 21, for a three-level system, the integral which appears
in (14) and (16) cannot be solved exactly in closed analytical form for physically
meaningful values of the constants. In most cases, the integrations must be
performed numerically.
For the special case ¢, =0, the integral in (14) and (16) becomes

J‘exp [u(t)] dt= V,;C exp[ V,BCt exp (_1:_>]+ B 17)

where f is an integration constant. Substituting (17) into both (14) and (16) and
applying the initial conditions N(¢=0)=N,, ¢(t=0)=g,, we obtain

qt)= l:(l )exp {—t-+VBC1: [exp(—i>—1:|} “ exp(t )]_1(18)
V BC T, & T, V,BC ’
N(t)= [( V.B +l> exp {i+ VaBC‘tCI:exp <—i— 1)— 1]}
€190 C Te Te
1 t\]! t
—oexP <‘Z>j| +Cexp<—;>. 19)

The constant C in (18) and (19) is given by

C=N,— V B (20)

From both (7) and (8) it may be seen that the condition ¢, =0 corresponds to a
pump rate of W,=1" ! for a three-level system, or to a pump rate of W,=0ina four-
level system. Equating these pump rates with the pump rate that was assumed in
deriving equation (11), W,=(t; ' —t7!), it is clear that (18) and (19) are valid only if
t=21, for a three-level system, or T=r1, for a four-level system. Equations (18) and
(19) are therefore the analytical solutions to the rate equations at the threshold pump
rate in a three-level system where ©=2t,.

A straightforward application of the methods of calculus reveal that the solution
q(t) given by (18) has at most two critical points (except the trivial solution ¢(£) =0 in
which case every point is a critical point). One of these points, g=0, t=00, is an
absolute minimum. The other critical point is an absolute maximum which occurs at
the value of time implicitly defined by

1 t t
0=—1+ <ZLCT°+ 1:c>|:—-— V,BCexp <——->:| exp {VaBthl: exp ( ——) — 1]}
€190 Te Te Te
(21)

The maximum photon number is found by substituting the value for £ from equation
(21) into equation (18).

Equations (18) and (19) may be combined to implicitly define g(¢) as a function of
N(t). The result is

1 (N 1
0=—In (F>—(Wp+;> In (:—0>— V,B(N—No)+¢y(a— o). (22)

T 0
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Although equation (22) was derived under the assumption that 1=21_ for a three-
level system, or T=1_ for a four-level system, this equation is valid even if these
assumptions are removed. The only assumptions that need to be made to derive (22)
are that ¢,=0, ¢>0 and N#0. This may be shown in the following manner.

Integrating equation (9) with respect to time (and leaving the integration
constants within the unsolved integrals), we obtain

1 V.B B 1 V.B
q+—fth= SN (Wp+—> Ndt——=2¢ (23)
T Cq Cq T (5]
Rearranging (5) gives
1d 1
%y BN——. 24)
q dt T,

Integrating (24) with respect to time (and, once again, leaving the integration
constant within the unsolved integral), we find that

c

t
v.B J‘th=lnq+T—. (25)

Substituting (25) into (23) and rearranging gives

v.B
¥ N

€y L1

(26)

1
—fth= —q+

: +W"+I/Tlnq+(W"+1/T——Vchz>t.

7T, ¢

Dividing equation (6) by N (assuming that N #0), integrating and rearranging, we

obtain
"oareimne(w,+ 1) Dtk Q27
— = n — - — .
7. )¢ €T, ST N ¢

The term 7.K in (27) is an integration constant. Substituting (27) into (26) and
rearranging give

1 1 1
c—zj‘ﬁdt=~—lnN—(Wp+;>lnq— V.BN+ciq+V,Bec,t+ K. (28)

T, T,

If ¢,=0, then equation (28) becomes

c

1 1
0=—lnN—(Wp+;> Ing—V,BN+c,q+K. (29)

Applying the initial condition ¢(Zy,) =g4, N(¢;) =N, equation (29) becomes

0="1in (%)—(W,&i—) In (i>— V.B(N—Ng)+c1(g—a0). (30)

Te 0 do

Inspection shows that equations (22) and (30) are identical. Equation (30) is the
general analytical relationship between ¢(¢) and N() at the threshold pump rate in a
three-level system, or at a pump rate of W,=0 in a four-level system.
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Figure 3. Graphical representation of equation (30) for a ruby laser at the threshold pump
rate.

If equation (30) is interpreted as defining ¢ as a function of N, then a
straightforward application of the methods of calculus reveals that ¢ has exactly two
critical points. Dividing equation (5) by equation (6), we find that

dg  V.BgN—g|t,
dN ¢ gN—(W,+1/1)N’

(31)

Setting dg/dN =0 results in two critical points. One of these points, g=0, N= o0,
cannot, for obvious reasons, be observed physically. The other critical point is an
absolute maximum which occurs at N=N_ and the corresponding value of q is
implicitly defined by

1 1 . 1
0= -T—ln (V,Bt Ny) —(Wp+;> In (qm—a> +(VaBN0 ~—T—>+ €1(@max—q0), (32)
c do c

where the value attained by ¢ is denoted g,,,,- A characteristic graphical represent-
ation of (30) is given in figure 3, where normalized q is plotted against normalized N.
The behaviour of equation (30) is consistent with the results of the functional
analysis provided here.

3. Conclusions

An analytical analysis of the rate equations for three- and four-level laser systems
has yielded exact analytical relationships between the inversion population density
N(2), the photon number g(#) and the time ¢ for specific values of the pump rate W,,.
Equation (12) gives the analytical relationship between N, g and ¢ for a pump rate of
Wy=1.1—1" ! for both three- and four-level systems, and (14)—(16) give the explicit
time dependences of both g and N for this pump rate. Equations (18) and (19) are the
exact closed-form analytical solutions to the rate equations at the threshold pump
rate in a three-level system where =27, and these equations also represent the
solution for a pump rate of W,=0 in a four-level system where 7 =1.. Equation (30)
gives the general analytical relationship between gand N for apump rate W of t~ lin
a three-level system, or W,=0 in a four-level system.
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4. Discussion

In the past, the rate equations were solved numerically to determine the
behaviour of a given laser system. With the exception of special limiting cases,
analytical solutions had not been determined, and so numerical integration was the
only alternative. Now that analytical solutions have been obtained, researchers have
a new means of judging the accuracy and limitations of the rate equation approach.
The closed-form analytical relationships that have been derived in this paper are, to
the author’s knowledge, the only exact solutions to the rate equations that have ever
been found.

Until now, the examination of transient solutions could only be conducted with
the aid of rather sophisticated numerical procedures. Equations (18) and (19)
demonstrate very clearly why this is so; some terms in these equations decay at the
rate of an exponential raised to the power of a decaying exponential. Although the
more general class of solutions given by (14) and (16) must be solved numerically, the
algorithms that are used to accomplish this task are relatively simple. For a three-
level system at the threshold pump rate, equation (30) may be solved in conjunction
with either equation (5) or equation (6) to determine transient solutions, thus
reducing the problem of solving two coupled nonlinear differential equations to one
of solving an algebraic equation and a nonlinear differential equation. At the very
least, these analytical relationships reduce the complexity of the algorithms that are
needed to determine numerical solutions.

In summary, the solutions presented in this paper represent the only exact
closed-form analytical solutions to the rate equations that are known. Experimental
work is required to determine the accuracy and limitations of these solutions, and it is
hoped that the results presented in this paper will motivate future investigators to
further the topic of laser theory.
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