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When heat is conducted from a solid into liquid helium, a thermal boundary 
resistance occurs across the interface. This effect, known as Kapitza resistance, 
has been described with limited success by the acoustic impedance theory. An 
energy exchange mechanism is proposed in this investigation which is distinct 
from that of the acoustic impedance theory. The resulting model is successful 
in predicting the existence of frequency thresholds in the energy transmission 
across Kapitza interfaces. These frequency thresholds were derived from an 
analysis of the interaction between helium atoms from the coupling fluid and 
adsorbed particles which are bound to the solid surface by the Van Der 
Waals potential of the interface. The predicted ratio of the onset frequencies 

for a solid surface coupled to 3He and 4He gas was found to be approxi- 
mately equal to the square root of the mass ratio. This result is in good 
agreement with experimental observations. 

1. I N T R O D U C T I O N  

When heat is conducted from a solid into liquid helium, a finite 
temperature jump AT occurs across the interface. ~ If the amount of heat 
flow per unit area ~) is sufficiently small, then AT should be proportional 
to it. The ratio, 

AT 
R K -  (1) 

represents a thermal resistance for the interface. This phenomenon, known 
as Kapitza resistance, has been a topic of both experimental and theoretical 
interest for more than half a century. Interest in this subject has remained 
strong for two main reasons: the inherent difficulties in attaining ever lower 
temperatures, and the fact that this effect is so poorly understood. 
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The most widely accepted theory of Kapitza resistance was developed 
by Khalatnikov, 2 and is known as the acoustic impedance theory. This 
theory is based upon the continuum mechanics concepts of classical wave 
propagation in elastic media. When thermal phonons strike the interface 
between a solid and liquid helium from the solid side, classical mechanics 
stipulates that the component of momentum parallel to the interface must 
be conserved. Since liquid helium and most solids differ in both density and 
sound velocity by at least an order of magnitude, this requirement can only 
be satisfied if the majority of the incident phonons are reflected back into 
the solid. The large mismatch in physical properties of the two media 
impedes the transmission of phonon energy across the interface. This 
impedance results in the temperature discontinuity which is observed at the 
interface when thermal phonons are transmitted across it. 

Experimental values of R/~ are typically 1 to 2 orders of magnitude 
less than the predictions of the acoustic impedance theory, 3 except at very 
low phonon temperatures, where somewhat better agreement has been 
observed. 4 This discrepancy between theoretical prediction and experimen- 
tal observation has not yet been resolved, despite several attempts to 
improve the theory by adding corrective terms which make the model more 
physically realistic. 5 s In view of this, it has been proposed 9 that an alter- 
native channel of energy transmission may exist at Kapitza interfaces which 
is not accounted for by the acoustic impedance theory. If correct, this 
energy exchange mechanism is responsible for a variety of experimentally 
observed characteristics including frequency thresholds in the energy trans- 
mission, and the dependence of these frequency thresholds upon the mass 
of the coupling fluid. 1~ 11 

The purpose of this paper is to describe in detail an energy exchange 
mechanism that is distinct from that of the acoustic impedance theory. This 
mechanism is based in part upon the experimental observation ~2-~3 that 
foreign atoms and molecules, including those which comprise the coupling 
fluid, may condense upon the solid surface due to the Van Der Waals 
potential of the interface. These observations have contributed to the 
development of several theoretical models ~4 18 which attempt to account 
for the role of both continuous and discontinuous adsorbed films and 
surface particles in the Kapitza problem. While these theories are each 
successful in predicting specific characteristics of the Kapitza resistance, 
none provide a mechanism for energy exchange between the helium and the 
adsorbed particles on an atomic level. Since the transmission of energy 
across such an interface actually occurs on an atomic scale, an atomic 
theory of this process would prove useful. 

The construction of such a theory requires as a prerequisite appro- 
priate models for both the liquid helium and the atomic structure of the 
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solid surface. In a practical sense, this can only be accomplished in certain 
special cases. For example, a complete theoretical analysis of the interac- 
tions which occur between the helium and the adsorbed particles cannot be 
performed without a detailed statistical knowledge of the dynamic proper- 
ties of the helium particles. And liquid helium in particular poses a number 
of difficulties due to its unique properties. Use of the ideal gas model for 
liquid helium addresses these issues, and may be justified because the 
thermal properties of liquid helium are similar to those of a high density 
ideal gas. 

Furthermore, the atomic structure of an interface cannot in most cases 
be determined exactly. But theoretical attempts to describe the power flux 
through an arbitrary interface requires the assumption of a specific surface 
structure. This aspect of the modeling process provides the most difficult 
challenge because real experimental surfaces vary greatly in their levels of 
atomic roughness, damage and contamination, and residual stress. With 
the exception of the special cases where the interface is laser annealed 19 or 
cleaved in situ, 2~ most experimental surfaces deviate to some degree from 
that of an ideal surface. For the purposes of this investigation, it is assumed 
that the levels of damage and residual stress at the surface do not result in 
significant scattering of the incident phonons. 

Scattering is also a concern when the wavelength of the incident 
phonons becomes comparable to the characteristic length scale of the 
surface roughness. For most Kapitza interfaces enhanced transmission is 
initiated at predominant phonon frequencies between 10 GHz and 
100 GHz. For a typical solid such as sapphire, which has a longitudinal 
wave speed of 10.9 x 103 m/s, the predominant phonon wavelengths lie 
between 103 A and 104 A. If the length scale of the surface roughness is 
much less than 103 A, then the surface should appear relatively flat to the 
incident phonons. In most cases, the experimental surfaces are atomically 
rough. If the characteristic length scale of the surface roughness is much 
less than the predominant phonon wavelength, then to a good approxima- 
tion these solid surfaces may be modeled as if they were atomically flat. 

The model which is developed in this investigation involves a sim- 
plified Kapitza interface where an ideal gas is coupled to an atomically flat 
surface onto which foreign particles are adsorbed. The objective is to 
determine how these adsorbed particles affect the transmission of energy 
across the interface. Classical collision theory is employed to construct an 
idealized 3-dimensional model of the interactions which occur between the 
adsorbed particles and the ideal gas. As phonons strike the interface from 
the solid side, the bound surface particles are set in motion. The incident 
phonons therefore impart both energy and momentum to the bound 
particles. As helium atoms from the ideal gas strike the interface, energy 
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may be exchanged between the helium and the bound particles through 
momentum transfer. The details of this model are presented in the 
following section. 

2. CLASSICAL THEORY OF A SOLID-IDEAL GAS INTERFACE 

Consider Fig. 1 which schematically illustrates a spherical particle of 
mass mt and radius r~ bound to a point on the surface of a linearly elastic, 
solid half-space. A monatomic ideal gas at temperature T and pressure 
occupies the half-space above the solid, and the spherical atoms which 
comprise the gas each have mass m 2 and radius r 2. The bound particle and 
the ideal gas are initially in a state of thermal equilibrium. The origin of a 
Cartesian coordinate system is set at the bound particle's equilibrium point 
when the surface is at rest, with the z-axis perpendicular to the solid 
surface, and the positive y-axis into the page. These axes are fixed in the 
rest frame of the laboratory, so that this coordinate system represents an 

@ 

Ideal Gas 

Solid [ 
I n c i d e n t  W a v e  

Fig. 1. A particle of mass m I is bound to a point on the 
solid surface by a simple harmonic potential function. 
Atoms of mass m 2 from the ideal gas strike the bound 
particle from above, while an incident longitudinal wave 
from the solid provides a driving force for the oscillator. 
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inertial frame of reference. A monochromatic longitudinal wave propagates 
through the solid and strikes the interface at normal incidence. 

If the stresses and displacements are continuous at the boundary, then 
classical wave theory (and the acoustic impedence theory) correctly predict 
that a transmitted longitudinal wave will propagate in the ideal gas, and a 
reflected longitudinal wave in the solid. If the solid surface is periodically 
displaced along the z axis with an amplitude A and frequency co, then this 
oscillation provides a driving force for the adsorbed particle. Provided the 
displacements of the adsorbed particle from its equilibrium position are 
sufficiently small, the potential field which binds it to the solid surface may 
be approximated by a simple harmonic potential function. The potential 
function used to model the interactions between the bound particle and the 
ideal gas particles is the hard sphere interaction potential VI which is given by 

f0 ,  IR2 - R l  I > r l  d- r 2 
v, (2) 

~ ,  IR2 - R I  I ~<rl+r2 

where R 1 = (x~, y~, Zl) and R2 = (x2, Y2, Z2) are  the position vectors of 
the bound particle and an ideal gas particle, respectively. 

When a collision occurs between these particles, the separation 
between the particle centers is equal to the sum of their respective radii, 
and the strength of the interaction potential in (2) is much larger than the 
binding potential. Under these circumstances the binding potential may 
effectively be ignored during the collision. This impulse approximation 
treats the bound particle as if it were a free particle at the time of collision, 
and reduces the complexity of a 3-body problem to that of a 2-body 
problem which can be solved easily. The final momentum of each particle 
may be determined by applying the laws of conservation of linear momen- 
tum, and conservation of energy. These expressions for the final momenta 
may then be used to calculate the change in kinetic energy of each particle 
due to the collision. If the energy exchanged per collision is multiplied by 
the number of collisions per unit area per unit time, and the result is 
averaged over all possible collisions, then the average power flux through 
the oscillator will be determined. In this manner it may be determined how 
the adsorbed foreign particle produces a channel of energy transmission in 
addition to that of the acoustic mismatch theory. 

If the collision between the bound particle and the ideal gas particle is 
completely elastic, then there is no dissipation of energy due to frictional 
forces. Applying the impulse approximation, conservation of linear momen- 
tum requires 

e l  + P :  =P~ + P i  (3) 
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while conservation of energy requires 

2m---7 -+  2rn2 - 2m, +-2m2 (4) 

Given the assumptions made in this model, the change in each particle's 
momentum due to the collision will occur along the direction vector 
which joints their centers at the time of impact. Solving (3) and (4) 
simultaneously, the final momentum of each particle is given by P~ and P~ 
where 

e ' , = e , +  oe e 
ml + m 2  k 

(5) 

P'2 = ~P2 m,2m2+ m2 [ (ml'-~akm2 - "~I)oYI~ (6) 

and the unit vector ~ is given by 

~ a  [R2 - R ~  ] (7) 
r 2 +r~ 

The change in kinetic energy of the ideal gas particle due to the collision 
with the bound particle is therefore 

1 12 - (8) 

Substituting (6) into (8), 

2m2_/'2 2F 
AKE2 -- (m 1 + m2) 2 m 1 -b 012 

(P2 ~ J) (9) 

where F is given by 

(lo) 

The number of collisions d/V between the ideal gas particles and the 
oscillator per unit area of the oscillator surface per unit time is given by, 2~ 

dl~= exp [ -2m krJ 
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where the term d3p2 is the differential element defined by 

d3p2 = dP2x dP2y dP2~ (12) 

and P2 is the density of the ideal gas. The power flux dO through the 
oscillator is the product of AKE 2 and tiN. It is given by 

aO= p2 ( 1 )3/2~ 2mS3 2V~ (/,~og)} 
mzmz\2mff2kTJ [(m, +m2) 2 ml+m~2 

. . ._.. .+ 

xexp I IP2~ ] _2m2kT ] d3p2 (13) 

By definition the bound particle is localized in space, with an amplitude of 
oscillation which is sufficiently small such that its motion may be described 
as simple harmonic. The bound particle is therefore close to the equi- 
librium point during the course of its oscillations. The spatial dependence 
of dO, which is contained in the term g, is a function of the relative position 
vectors of the two colliding particles. Imposing the approximation that the 
positio__n vector of the bound particle is the origin of the coordinate system 
(i.e., R1 = (0, 0, 0)) at the time of collision should simplify the calculation 
of the average power flux without compromising the accuracy of the final 
result. Applying this approximation to (13), averaging over all possible 
position coordinates of the ideal gas particles at the time of impact, and 
integrating over the momentum components of the ideal gas, 

q avg ~- -- P2 

4mlm2(ml + m2) 2 

5 2 ml 3/2 l m2kT [8mlm2-4m~Plzl 
x {2-~m2(2rcm2kT) + 2 m2 

-t-x/2~mzkT [ ~~ (mz-  2ml)(e~x W e~y + 2e2~) l 

3m2P,z(,2 x 2 2 plZz) } - ~  + P,y+-~ (14) 

Consider the expressions which appear on the right hand side of (14) which 
involve the terms Plz, P~zP2x, Plzp2y, and P~z. These terms average out 
to zero over an integer number of cycles of the incident wave provided the 
oscillator is in steady state during its interaction with the ideal gas 
particles. This can be most clearly understood by noting that each of these 
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terms is an odd function of time in steady state. If the brackets ( ) denote 
the average value of a quantity over an integer number of cycles of the 
incident wave, then the time-averaged power flux through the oscillator 
becomes, 

1 P2 ~ k T  
( (la~g) = - 2n 4mlm2(m 1 + m2) 2 

x [ lOm2kT - (2m I m2)(p~ x ..~ 2 2 - P ,y+2P,~)  ] (15) 

An analysis of the driven harmonic oscillator shows that 2~ 

(P~x)  = m , k T  (16) 

( p2 , )  - - m , k T  (17) 

1 ml CA 2092r (18) 
( P~z) =m,kT + 2 (o~_o~2)2 + 4p2~o2 

where the oscillator's natural frequency co. is defined as 

~o.-: (19) 

The term m l k T  results from the equilibrium state between the oscillator 
and the ideal gas prior to the arrival of the incident longitudinal wave. C 
is the curvature of the binding potential at the equilibrium separation and 
fl represents the damping which the oscillator experiences due to its inter- 
action with the solid surface. Substituting (16), (17), and (18) into (15) and 
regrouping terms, 

1 P2 ~ k T  
(4avg) = 2n (m, +m2)  2 

ml . , ..--T757TTgB2~o21 (20) 
to97,--~ ) + p J 

3. F R E Q U E N C Y  THRESHOLDS 

A net power flux from the adsorbed particle to the ideal gas will be 
present when 

(4avg> >0  (21) 
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Examination of (20) reveals that this condition will be satisfied provided 

CA2co2 co 2 
(1 + ~ z ) k T <  (~-~2 ~)  (co2_ co2)2 + 4fl2co 2 (22) 

By solving the inequality in (22) for o~, the general solutions for the 
threshold frequencies may be determined. Consider the special case where 
individual atoms from the ideal gas condense upon the solid surface due 
to the Van Der Waals potential of the interface. If these adsorbed atoms 
serve as non-interacting oscillators, then the mass of the oscillator equals the 
mass of an ideal gas particle, i.e., m~ = m2. Under these circumstances (22) 
reduces to 

3 1 c.dZconZco 2 
k T  < -~ (co~ _ co2)2 + 4/72092 (23) 

The term on the left hand side of the inequality in (23) is the mean transla- 
tional kinetic energy of an ideal gas particle. The term on the right hand 
side of this inequality represents the time averaged kinetic energy imparted 
to the oscillator by the incident longitudinal wave. In this special case, 
the initiation criteria stated in (21) reduces to a simple energy balance. A 
net power flux will occur from the oscillator to the ideal gas when the 
time averaged kinetic energy imparted to the oscillator by the incident 
longitudinal wave exceeds the mean translational kinetic energy of an ideal 
gas particle. If the oscillator is sufficiently underdamped such that/? << co, 
then (23) simplifies to 

3 1 CA 2co2 co 2 
- ~ k T < ~  (co2_ co2)2; re ~ co, (24) 

Solving (24) for co, a net power flux will occur from the oscillator to the 
ideal gas when the driving frequency of the incident wave falls between the 
following values, 

coL<co <coy (25) 

where 

and 

col = co" + 24k-----T - ~ / ~ J  (26) 

+ ~ + ~/2-~-T] (27) 
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Frequency thresholds have been observed in phonon reflection studies 
of Kapitza interfaces. Koblinger et al. t~ used superconducting tunnel 
junctions to emit frequency-tunable monochromatic phonons at normal 
incidence into insulator crystal substrates. A sharp amplitude reduction in 
the reflected phonon signal was observed at 85 GHz when the tunneling 
diodes were covered by liquid or gaseous 4He. When the same surface 
was placed in contact with SHe gas, a shift in the threshold frequency to 
100 GHz was observed. These results can be accounted for by the current 
theory. 

Examination of (26) shows that the lower threshold frequency ~ t  is a 
function of several variables: the natural frequency of oscillation (ran), the 
helium temperature (T), the amplitude of the surface displacement (A), and 
the curvature of the binding potential at the equilibrium separation (C). 
A helium temperature of l K was used in the experiments conducted by 
Koblinger et  al. for contact with both 3He and 4He, so the values of T are 
the same in both cases. Since the phonon signal was generated by the 
same source under the same set of conditions, the amplitudes A are also 
approximately equal. 3He and 4He differ only in mass. The "spring con- 
stant" of the binding potential is not a function of mass, so to a good 
approximation the values of C are also equal. If subscripts of 3 and 4 are 
used to denote properties associated with 3He and 4He, respectively, then 
the ratio of the lower threshold frequencies for contact with 3He and 4He 
is given by 

(DL3 6'9 n 3 (28) 
(DL4 gJ)n4 

where c0.3 and co. 4 are the natural frequencies of oscillation for 3He and 
4He atoms, respectively. Substituting for ~0.3 and o9.4 from (19) into (28), 
and noting C3---C4, 

C0L4tOL3-- m~3 (29) 

The atomic masses for 3He and 4He are 23 

3He mass m 3 = 5.0095 • 10-27 kg (30) 

4He  m a s s  m 4 = 6.6482 • 10 -27 k g  (31) 

Substituting (30) and (31) into (29), 

~oL3 = /~.6482 x 10 -27 kg __- 1.15 
COLa "q 5.0095 • 10 -z7 kg 

(32) 
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The ratio of the onset frequencies measured by Koblinger et  al. is 

(DL3 100 GHz 
. . . .  1.18 (33) 
o9~ 85 GHz 

The ratio of the onset frequencies predicted by the current theory differs 
from the experimentally determined value of 1.18 by less than 3 %. 

4. CONCLUSIONS 

The model which is presented in this paper is successful in predicting 
the existence of frequency thresholds in the energy transmission across 
Kapitza interfaces. These frequency thresholds were derived from an 
analysis of the interaction between helium atoms from the coupling fluid 
and adsorbed foreign particles which are bound to the solid surface by the 
Van Der Waals potential of the interface. For  the special case where He 
atoms are adsorbed onto the solid surface, the ratio of the onset frequencies 
for a solid in contact with 3He and '*He was found to be approximately 
equal to the square root of the mass ratio. This mass dependence was 
observed in the investigations of Koblinger et  al. ~0,11 where superconducting 
tunnel junctions were used to emit frequency-tunable monochromatic 
phonons into insulator crystal substrates. A sharp reduction in the reflected 
phonon signal was observed at 85 GHz when the tunneling diodes were 
covered by liquid or gaseous 4He. When the same surface was placed in 
contact with 3He gas, a shift in the threshold frequency to 100 GHz was 
observed. The ratio of the threshold frequencies measured experimentally is 
1.18, which differs from the theoretically predicted value of 1.15 by less 
than 3 %. 
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